Gradi di shock delle meteoriti

Descrizione
Unshocked (sharp extinction of olivine grains), peak shock pressure $<4-5 \mathrm{GPa}$, where $1 \mathrm{GPa}=10,000$ bars; min. temp. increase $10^{\circ} \mathrm{C}$. 5-10 GPa; min. temp. increase $20^{\circ} \mathrm{C}$.
Weakly shocked (strong undulose extinction in olivine grains with planar fracture and melt pockets; silicate darkening; irregular FeS in Fe -Ni metal; chromite veinlets and chromite-plagioclase assemblages; metallic Cu grains), peak shock pressure 10-15 GPa; min. temp. increase $100^{\circ} \mathrm{C}$.
Moderately shocked (mosaicism in olivine grains; some maskelynitization of feldspar; mobilization of metal and FeS in shock veins; narrow silicate melt veins; metal and

Strongly shocked (presence of large impact melt clasts), peak shock pressure 45-60 GPa; min. temp. increase $600^{\circ} \mathrm{C}$.
Very strongly shocked (localized melt veins and maskelynite present), peak shock pressure $60-75 \mathrm{GPa}$; min. temp. increase $1500^{\circ} \mathrm{C}$ (who le rock impact melting occurs at $75-90 \mathrm{GPa}$; temp. increase $>1500^{\circ} \mathrm{C}$).
*shock stage is determined by the highest indicated stage by at least 25% of the indicator grains.

Gradi di alterazione delle meteoriti

 light. Fresh falls are usually of this grade, although some are already W1.W1 Minor oxide rims around metal and troilite and minor oxide veins.
W2 Moderate oxidation of metal, about $20-60 \%$ being affected.
W3 Heavy oxidation of metal and troilite, $60-95 \%$ being replaced.
W4 Complete (>95\%) oxidation of metal and troilite, but no alteration of silicates.
W5 Beginning alteration of mafic silicates, mainly along cracks.
W6 Massive replacement of silicates by clay minerals and oxides.

